Bharat Mirror English
Novel technique may help in early detection of Cancer Alzheimer’s and Parkinson’s
Science Tech

Novel technique may help in early detection of Cancer, Alzheimer’s, and Parkinson’s

New Delhi: Scientists from Raman Research Institute (RRI) have developed a new technique to measure DNA modifications that can have applications in the early diagnosis of multiple diseases like Cancer, Alzheimer’s, and Parkinson’s diseases.

DNA conformation, in particular, it’s supercoiling, plays an important structural and functional role in gene accessibility as well as in DNA condensation. Alteration in DNA affects their expression and functions. DNA controls cell survival through the genetic code as well as via modifications to its structure. The scientific community was looking for a technique with very high resolution to measure such modifications of DNA structures and observe and understand the molecular mechanisms associated with it to track rare diseases.

The novel nanopore-based platform developed by the scientists can directly measure such modifications or branched DNA properties with the single-molecule resolution even with extremely low amounts of sample. The platform and associated analysis techniques developed by the team can quantitatively assess the distribution of supercoiled branches on DNA plasmids (DNA molecule outside the chromosome).

“Further optimization of the technique can help in the development of portable nano-bio sensors for detection and quantification of protein aggregates and cell-free DNA or nucleosomes. This may help in the early diagnosis of many diseases like Cancer, Alzheimer’s, and Parkinson’s diseases” said Prof GautamVivekSoni, the lead researcher. Currently, researchers at RRI are also exploring applications of this method for virus detection.

The measurement principle of the novel platform is analogous to the Archimedes principle. Individual analyte molecules are driven through a nanopore under an applied voltage, which, during translocation, results in a tiny electrical blip. Charges excluded by the analyte (supercoiled DNA) in the  nanopore are directly proportional to the volume of the particle and are directly measured as the current change. This method utilizes extremely low amounts of sample and can measure DNA structural changes ranging to a few nanometers resolution in the axis perpendicular to the translocation and few tens of nanometers along the translocation axis.

The research team comprise  Dr Sumanth Kumar Maheshwaram, Dr Koushik Sreenivasaa and Prof Gautam Vivek Soni. The research findings have been recently published in the journal ‘Nanoscale’. (India Science Wire)

Related posts

Embrace the Essence of Raksha Bandhan with Kingston Technology’s compelling Gifting Options

BM English

Pagaria Group’s ProxKey USB Token: A Catalyst for Growing and Securing Digital Signature Usage in the Digital Realm

BM English

FCUK launches fashion-tech smartwatch Tide, premium textured strap with a built-in voice assistance & single sync BT calling at Rs 1995 on Amazon Fashion

BM English

Enhance Your Travel Experience with the Compelling Travel Gadgets from Kingston Technology

BM English

Cybersecurity Startup Prikus Tech raises USD 6.2M in seed funding

BM English

Applify revolutionizes mobile app development with cutting-edge solutions

BM English

Leave a Comment